If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20d^2+39d+18=0
a = 20; b = 39; c = +18;
Δ = b2-4ac
Δ = 392-4·20·18
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-9}{2*20}=\frac{-48}{40} =-1+1/5 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+9}{2*20}=\frac{-30}{40} =-3/4 $
| 20b^2-17b+63=0 | | 41=2/5x-72 | | d/6=-11 | | x-4-3x=-2x-3x-3-1 | | 5x-8+6x=14 | | -.8x+40+-8x=-35 | | -32-2x=20-4x | | 6+-2(x+-3)=12 | | 4(4x+2)=19x+7-3x+1 | | X+6=3x-31÷2 | | 20d^+39d+18=0 | | (a)/3+(a-2)/5=6 | | 8y-14y=-18-24 | | 12(2x-3)=60 | | (y+2)^2-6(y+2)+5=0 | | n-2=10n+4/2 | | (4x-15÷2)+(x+3÷10)=-3 | | i-9=-19 | | 9(x-12=24 | | 45(-7x+5)*45(4x-15)=45 | | 7(x-7)+6(4+3x)=-50 | | .7b+5=20-b | | -27-(-46)=x/12 | | -5(2x-7)-3(x+2)=-10 | | 7x-49-5=-96 | | 8/3=-1/3+y | | 5(w-6)(-w-2)=0 | | -x+27=3x+3 | | 2t^2-4t+30=0 | | -5p-8=-8p+2p | | 20y+13=2-16y+11 | | X/3-5/9=5x/9+1/3 |